See https://pjreddie.com/darknet/yolo/
The prerequisites are an ubuntu system, equipped with a GPU, with appropriate drivers, CUDA, and Opencv, as well as the Darknet tools.
All these are described in the previous posts.
1.Follow instructions from https://pjreddie.com/darknet/yolo/ for weights download and testing with image based object detection.
I get errors in processing the image recognition samples
$ ./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./cfg/yolov3.weights ./data/dog.jpg
layer filters size input output
0 conv 32 3 x 3 / 1 608 x 608 x 3 -> 608 x 608 x 32 0.639 BFLOPs
1 conv 64 3 x 3 / 2 608 x 608 x 32 -> 304 x 304 x 64 3.407 BFLOPs
2 conv 32 1 x 1 / 1 304 x 304 x 64 -> 304 x 304 x 32 0.379 BFLOPs
3 CUDA Error: out of memory
darknet: ./src/cuda.c:36: check_error: Assertion `0' failed.
Aborted (core dumped)
I retry with tiny model (i download the tiny network weights) and now it works
$ ./darknet detector test ./cfg/coco.data ./cfg/yolov3-tiny.cfg ./cfg/yolov3-tiny.weights ./data/dog.jpg
...
Loading weights from cfg/yolov3-tiny.weights...Done!
data/dog.jpg: Predicted in 0.192830 seconds.
dog: 56%
car: 52%
truck: 56%
car: 62%
bicycle: 58%
It seems that the error comes from the network configurations in cfg/yolov3.cfg
Comparing the yolov3.cfg and the yolov3-tiny.cfg i managed to find parameter to have the network run correctly with the larger weight-set
I edited the first lines of yolov3.cfg as follows
[net]
# Testing
batch=1
subdivisions=1
# Training
#batch=64
#subdivisions=16
#width=608
#height=608
width=416
height=416
channels=3
[...]
And now it works!
$ ./darknet detector test cfg/coco.data cfg/yolov3.cfg cfg/yolov3.weights data/dog.jpg
[...]
Loading weights from cfg/yolov3.weights...Done!
data/dog.jpg: Predicted in 0.327576 seconds.
dog: 99%
truck: 93%
bicycle: 99%
(base) mgua@mgtp53s:~/darknet/darknet$
#apt update
#apt install mplayer
3.run
$./darknet detector demo ./cfg/voc.data ./cfg/yolov3-voc.cfg ./cfg/yolov3-voc.weights
or, for light model
$./darknet detector demo ./cfg/coco.data ./cfg/yolov3-tiny.cfg ./cfg/yolov3-tiny.weights
On my laptop computer, with GPU Nvidia Quadro P520, OpenCV and CUDA I get about 6 FPS (frames per second) with the full weights set and 16 FPS with the tiny model.
The following syntax should allow to use YOLO getting input from a network camera:
$./darknet detector demo ./cfg/voc.data ./cfg/yolo-voc.cfg ./cfg/yolo-voc.weights rtsp://login:pass@192.168.0.228:554 -i 0
No comments:
Post a Comment